Synthesis, characterization, and spectroscopic studies of palladium(II) and silver(I) complexes of 4-methoxybenzoylmethylenetriphenylphosphorane and 4-fluorobenzoylmethylenetriphenylphosphorane

Kazem Karami

Received: 12 March 2008/Accepted: 3 June 2008/Published online: 25 June 2008 © Springer Science+Business Media B.V. 2008

Abstract The reactions of 4-methoxybenzoylmethylenetriphenylphosphorane ylide (MOBPPY), {(Ph)₃PCHCOC₆H₄O Me}, and 4-flourobenzoylmethylenetriphenylphosphorane ylide (FBPPY) with [Pd(C₆H₄CH₂NH₂- κ^2 -C-N)ClL] (L = Py, 3-MePy, 4-MePy, or PPh₃), in equimolar ratios in CH₂Cl₂ yield [Pd(C₆H₄CH₂NH₂- κ^2 -C-N)L (Ye)]TfO [(L = PPh₃, Ye = MOBPPY; L = PPh₃, Ye = FBPPY; L = Py, Ye = MOBPPY; or L = 3-MePy, Ye = MOBPPY]. The reaction of MOBPPY with AgOTf (OTf = CF₃SO₃) in molar ratios (2:1) using dry acetone as solvent gives [Ag(MOBPPY)₂]OTf.

Introduction

The α -ketostabilized phosphorus ylides Ph₃PCH=C(H) COR (R = Me, Ph, OMe) are interesting ligands in organometallic chemistry and useful intermediates for organic synthesis [1–4]. Carbonyl-stabilized phosphorus ylides are interesting ligands because they can behave as C- or Odonors owing to the delocalization of the ylidic electron pair [5]. This delocalization also makes these ligands weak nucleophiles, but this does not reduce their interest as ligands; indeed it was their weak donor ability that allowed other groups to prepare new types of ylide complexes [5, 6]. This ambidentate character facilitates the preparation of stable metal complexes (Scheme 1) in which the ylide can be O- (both *cis*oid and *trans*oid forms, b) [6] or C-coordinated (a) [7].

K. Karami (🖂)

In the compounds reported to date, the chemical behavior of the α -ketostabilized phosphorus ylides has been clearly dominated by the C-coordinated form [7–11], and very few examples of O-coordinated ylides are known [6, 12–15]. Some of these examples contain the ylide O-coordinated to a hard, very exophilic metal center, as Sn(IV) [12] or group 4 metals in high oxidation number [13]. Other attempts to obtain this kind of coordination to soft metals such as Pd(II), Pt(II), and Hg(II) gave C-coordination [16]. I Synthesis Pd Complexes (1)–(4) made by reaction of stabilized phosphorus ylides (MOBPPY and FBPPY) with [Pd(C₆H₄CH₂NH₂- κ^2 -C,N)LCI] (L = Py, 3-MePy, 4-MePy, or PPh₃) and AgOTf or TIOTf in this article. I have also synthesized a cationic complex (**5**) of 4methoxybenzoylmethylenetriphenylphosphorane with AgOTf containing the C-bound ylide.

Experimental

Diethyl ether was distilled over a mixture of sodium and benzophenone just before use [16]. All other solvents were reagent grade and used without further purifications. Solution-state ¹H and ³¹P NMR spectra at 300 K were obtained in CDCl₃ using a 500 MHz Bruker spectrometer operating at 500.13 MHz for ¹H and 161.97 MHz for ³¹P and referenced to H₃PO₄ (85%) for ³¹P{¹H}NMR spectra. IR spectra were recorded on a FT-IR JASCO 680 spectrophotometer, and the measurements were made by the KBr disk method. Melting points were measured on a Gallenhamp 9B 3707 F apparatus.

Materials

All chemicals were purchased from Merck. The ylides were synthesized by the reaction of triphenylphosphine with a

Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, I.R. Iran e-mail: karami@cc.iut.ac.ir

Scheme 1 R1 = H, $R2 = C_6H_4$ -O-Me or C_6H_4 -F

chloroform solution of 2-bromo-4-methoxyacetophenone or 2-bromo-4-flouroacethophenone and dehydrogenated with NaOH [17, 18]. All solvents were dried by the reported methods [19].

Preparation of complexes (1)-(4)

To a solution of $[Pd(C_6H_4CH_2NH_2-\kappa^2-C-N)(L)Cl]$ (0.13– 0.22 mmol) in THF or CH_2Cl_2 plus CH_3COCH_3 (1:3), solid TITfO (0.13–0.22 mmol) was added. The resulting suspension was stirred for 2 h at RT and filtered through a plug of celite or plug of MgSO₄. To the freshly obtained solution, cooled at 0 °C, MOBPPY or FBPPY (0.13– 0.22 mmol) was added. After 1–3 h of stirring at 0 °C, the crude complex had precipitated as a white solid. This was soluble in CH_2Cl_2 at room temperature. The solvent was completely removed and Et_2O (30 mL) added to give a white powder, which was filtered off, air dried, and washed with Et_2O to give complexes (1)–(4), which were recrystallized from CH_2Cl_2 -*n*-hexane for NMR measurements. The complexes are readily soluble in CH_2Cl_2 , acetone, and $CHCl_3$ but insoluble in Et_2O and *n*-hexane.

Complex [Pd ($C_6H_4CH_2NH_2$ - κ^2 -C-N)PPh₃MOBPPY]OTf (1)

Yield: 53%; Color: white; Mp: 137 °C; IR (cm⁻¹): ν (N–H) = 3332–3256, ν (C=O) = 1475; ¹HNMR: (500 MHz, CDCl₃, RT): δ (ppm) 7.84–7.09 (m, 34H, 6C₆H₅, C₆H₄), 6.85 (d, 3H, C₆H₄), 6.31 (br, 1H, C₆H₄), 4.3 (d, 1H, CH ylide, ²J_{PH} = 25 Hz), 3.86 (s, 3H, OMe), 3.2 (s, 2H, NH₂), 1.70 (s, 2H, CH₂ N); ³¹PNMR: (500 MHz, CDCl₃, RT): δ (ppm) 40.93 (s, Ph₃P-Pd), 14.06 (s, P⁺Ph₃). Elemental analysis: Calc: C, 61.6; H, 4.5; N, 1.4; S, 3.1; Found: C, 62.0; H, 4.4; N, 1.5; S, 3.4; Λ = 126 Ω⁻¹ mol⁻¹ cm².

Complex $[Pd(C_6H_4CH_2NH_2-\kappa^2-C-N)PPh_3FBPPY]OTf(2)$

Yield: 76%; Color: white; Mp: 149 °C; IR (cm⁻¹): ν (N–H) = 3302–3256, ν (C=O) = 1475; ¹HNMR: (500 MHz, CDCl₃, RT): δ (ppm) 8.16–6.91 (m, 34H, 6C₆H₅, C₆H₄), 6.9 (d, 2H, C₆H₄), 6.40 (br, 2H, C₆H₄), 4.4 (d, 1H, CH ylide, ²J_{PH} = 25 Hz), 3.4 (s, 2H, NH₂), 1.73 (s, 2H, CH₂ N); ³¹PNMR: (500 MHz, CDCl₃, RT): δ (ppm) 41.28

(s, Ph₃P-Pd), 13.68 (s, P⁺Ph₃). Elemental analysis: Calc: C, 61.80; H, 4.2; N, 1.40; S, 3.1; Found: C, 62.00; H, 4.6; N, 1.8; S, 3.2; $\Lambda = 126 \ \Omega^{-1} \ \text{mol}^{-1} \ \text{cm}^2$.

Complex $[Pd(C_6H_4CH_2NH_2-\kappa^2-C-N)(Py)(OC(MeO-4-C_6H_4)=CHPPh_3)]OTf(3)$

Yield: 48%; Color: white; Mp: 178 °C; IR (cm⁻¹): ν (N–H) 3306–3244), ν (C = N) py 1604, ν (C=O)1486; ¹HNMR: (500 MHz, CDCl₃, RT): δ (ppm) 8.33 (br, 2H, Py), 8.02 (br, 2H, Py), 7.8–7.26 (m, 19H, 3C₆H₅ + C₆H₄), 7.33 (br, 1H, Py), 6.95 (d, 2H, C₆H₄, ³J_{H–H} = 6.97 Hz), 6.89(s br, 1H, C₆H₄), 6.71 (t br, 2H, NH₂), 5.96 (s, 1H, C₆H₄), 4.5 (d, 1H, CH ylide, ²J_{P–H} = 23.9 Hz), 4 (br, 2H, CH₂ N), 3.87 (s, 3H, OMe); ³¹PNMR: (500 MHz, CDCl₃, RT): δ (ppm) 16.0 (s, P⁺Ph3). Elemental analysis: Calc: C, 56.49; H, 4.26; N, 3.30; S, 3.77; Found: C, 56.89; H, 4.30; N, 3.81; S, 3.85; Λ = 175 Ω^{-1} mol⁻¹ cm².

Complex $[Pd(C_6H_4CH_2NH_2-\kappa^2-C,N)(3-Me-Py)$ $(OC(MeO-4-C_6H_4)=CHPPh_3)]OTf(4)$

Yield: 62%; Color: white; Mp: 178 °C; IR (cm⁻¹): v(N–H) 3306–3244), v(C=N) py 1604, v(C=O) 1492; ¹HNMR: (500 MHz, CDCl₃, RT): δ (ppm) 8.02 (br, 1H, Py), 8.02 (d, 2H, Py, ³J_{H-H} = 7.56 Hz), 7.8–7.26 (m, 15H, 3C₆H₅), 7.18 (br, 1H, Py), 6.95 (d, 2H, C₆H₄, ³J_{H-H} = 8.2 Hz), 6.89 (s br, 1H, C₆H₄), 6.73 (s br, 1H, C₆H₄), 5.96 (s br, 1H, C₆H₄), 4.4 (d, 1H, CH ylide, ²J_{P-H} = 23.2 Hz), 4.04 (br, 2H, NH₂), 3.87 (s, 3H, OMe), 2.27 (s br, 3H, Me-Py), 1.78 (s br, 2H, CH₂N); ³¹PNMR: (500 MHz, CDCl₃, RT): δ (ppm) 16.2 (s, P⁺Ph3). Elemental analysis: Calc: C, 57.0; H, 4.2; N, 3.4; S, 3.9; Found: C, 56.9; H, 4.30; N, 3.8; S, 3.8; Λ = 148 Ω^{-1} mol⁻¹ cm².

Preparation of [Ag(MOBPPY)₂]CF₃SO₃ (5)

MOBPPY (0.410 g, 1 mmol) was added to a solution of AgOTf (0.256 g, 1 mmol) in acetone (10 mL). The solution was stirred protected from the light for 1 h and then filtered through MgSO₄. The volume of solvent was reduced under vacuum to about 2 mL. Diethyl ether (25 mL) was added to precipitate [Ag{CH(PPh₃)-C(O)C₆H₄-OMe]TfO (5) as a white powder. Mp: 176 °C; ¹HNMR: (500 MHz, CDCl₃, RT): δ (ppm) 8.06 (d, 2H, 2H_o, C₆H₄, ³J_{H-H} = 8.5 Hz), 7.56–7.30 (m, 15H, 3C₆H₅), 6.81 (d, 2H, 2H_m, C₆H₄, ³J_{H-H} = 8.8 Hz), 5.22 (br s, 1H, CHP), 3.86 s, 3H, OMe); ³¹PNMR: (500 MHz, CDCl₃, RT): δ (ppm) 24.75 (s, P⁺Ph₃). Anal. Calc for C₅₅H₄₆Ag-F₃O₇P₂S: C, 61.3; H, 4.3; S, 3.0. Anal. Found: C, 61.5; H, 3.9; S, 3.1; $\Lambda = 72 \ \Omega^{-1} \ mol^{-1} \ cm^2$.

Results and discussion

Synthesis

MOBPPY and FBPPY were prepared following the method reported by Ramirez et al. in two steps [18]. The reaction of 2-bromo-4'-methoxyacetophenone and 2-bromo-4'-fluoroacetophenone with PPh₃ gives the phosphonium salts, which react with a weak base in H₂O, allowing the isolation of ylides FBPPY and MOBPPY as compounds stable to air and moisture.

When a freshly prepared solution of $[Pd(C_6H_4CH_2NH_2-\kappa^2-C-N)L(S)]$ TfO was reacted with MOBPPY or FBPPY (1:1 molar ratio) in THF or Me₂CO at 0 °C, white solids of stoichiometry $[Pd(C_6H_4CH_2NH_2-\kappa^2-C-N)L(Ye)]$ TfO (1)–(4) (Ye = MOBPPY or FBPPY) precipitated in good yields after 30 min of stirring (Scheme 2).

Spectroscopy

The v(CO) band, which is sensitive to complexation, occurs at 1504 and 1516 cm⁻¹ in the parent ylides (Table 1), as in the case of other resonance stabilized ylides [21]. In general, coordination of the ylide through C causes an increase in v(CO) while for O-coordination a lowering of v(CO) is expected. The IR absorption bands observed for these complexes show a lowering of v(CO), indicating coordination of the ylide oxygen for the Pd complexes (1)–(4). The IR spectrum of (5) shows a strong absorption at 1612 cm⁻¹, which is shifted to higher frequency with respect to the starting ylide FBPPY (1516 cm⁻¹), meaning that the ylide is C-bonded to the Ag center. The $v(P^+-C^-)$ band which is also diagnostic of the coordination occurs at 837 cm⁻¹ in $(C_6H_5)_3P^+-CH_2COC_6H_4$ -O-Me (phosphonium salt) and at 855 cm⁻¹ in $(C_6H_5)_3PCHCOC_6H_4$ -O-Me. In the present study, the $v(P^+-C^-)$ values for all five complexes were shifted to lower frequency (Table 1), suggesting some removal of electron density from the P–C bond. The ¹HNMR spectra of complexes (1)–(4) show a doublet or broad signal attributed to the proton methine CH at 4.3– 4.5 ppm with ²J_(PH) = 25 Hz (1); these values are close to those observed in other O-bound complexes [6, 12–15].

The ¹HNMR spectra of complexes (1)–(4) showed only one signal for the CH methine with a coupling constant ${}^{2}J_{P-}$ H near to that of the free ylides and close to those observed in other O-bonded complexes; this coupling is usually smaller in C-linked ylides [7–11]. The ¹HNMR of complex (5) show one broad signal for CH methine. The signal due to the methine proton, when recorded in CDCl₃, was broad for complexes (1)–(4). This indicates probably that the ylide dissociates in solution [19]. The ¹HNMR spectra of complexes (1)-(4) show a doublet or broad signal attributed to the methene proton CH at 4.3-4.5 ppm., with ${}^{2}J_{(PH)} = 25$ Hz (1); these values are close to those observed in other O-bound complexes. Complex (5) wherein the ylide is C-coordinated exhibits a ${}^{2}J_{(PH)}$ value of 10 or less Hz [7, 11]. Moreover, the ${}^{31}P$ { ${}^{1}H$ }-NMR spectra of complexes (1)-(4) show a sharp singlet at 16 ppm, shifted slightly up field relative to the free ylide and again in agreement with O-coordination [6, 12–15].

The ³¹PNMR resonance of complex (5) occurs at lower field with respect to the free ylide (Table 2). The expected

Scheme 2 (1) R = MeO, L = PPh₃; (2) R = F, L = PPh₃; (3) R = MeO, L = pyridine; (4) R = MeO,

L = 3-methyl pyridine

Compound	v(CO)	$\Delta(CO)$	v(P–C)	Reference
Ph ₃ PCHCOCH ₃ (APPY)	1530	-		[19]
Ph ₃ PCHCOPh (BPPY)	1520	_	878	[19]
Ph ₃ PCHCOC ₆ H ₄ _OMe (=MOBPPY)	1504	-	855	This work
Ph ₃ PCHCOC ₆ H ₄ F (=FBPPY)	1516		883	This work
O-coordination				
$[(Sn(CH_3)_3 \cdot APPY]Cl$	1480	-40	-	[12]
$[Pd\{C_6F_5)(PPh_3\}_2 \\ (APPY)]ClO_4$	1513	-17	-	[7]
Complex (1)	1479	-25	821	This work
Complex (2)	1481	-37	817	This work
Complex (3)	1475	-29	808	This work
Complex (4)	1480	-24	824	This work
C-coordination				
Complex (5)	1612	+96	880	This work
$BPPY \cdot HgCl_2$	1635	+115	-	[20]
$BPPY \cdot HgBr_2$	1630	+110	-	[20]

Table 1 v(CO) frequencies of selected phosphoranes and their metalcomplexes

Abbreviations: MOBPPY, 4-methoxybenzoylmethylenetriphenylphosphorane; FBPPY, 4-fluorobenzoylmethylenetriphenylphosphorane; BPPY, benzoylmethylenetriphenylphosphoran; APPY, acethylmethyl cenetriphenylphosphoran

downfield shifts of ³¹P and ¹H signals for the PCH group upon complexation were observed in their corresponding spectra. The appearance of single signals for the PCH group in both the ³¹P and ¹HNMR at ambient temperature indicates the presence of only one molecule for all the complexes. It must be noted that O-coordination of the ylide sometimes leads to the formation of cis and trans isomers, giving rise to two different signals in the ³¹P and ¹HNMR [6, 18], ¹H and ³¹P-{¹H} NMR data are presented in Table 2. Although two diastereoisomers (RR/SS and RS) are possible for complex (5) (because the methine carbons are chiral), NMR spectroscopy does not distinguish them at room temperature. The methine resonances are intermediate between, and ${}^{2}J_{(PH)}$ values smaller than, those in the free ylides and phosphonium salts; this was observed for other C-coordinated carbonyl-stabilized phosphorus ylide complexes: it is attributed the hybridization change in the ylidic carbon (sp²-sp³) in the Ccoordination mode [7, 15, 17]. Values of ${}^{2}J_{(PH)}$ much larger (ca. 20 Hz) have been observed in complex (1) where coordination is through the oxygen atom [12]. Neither H-Ag nor P-Ag coupling was observed at room temperature in the spectra of complex (5); the same was the case for $[Ag(C_6F_5)CH(PPh_3)CO_2Me]$ [19]. It is possible that a fast equilibrium between the complexes and free ylides is responsible for the failure to observe either the NMR Table 2 1 H and 31 P NMR data of MOBPPY and its complexes with Ag(I) and Pd(II)

Compound	¹ H chemical shifts (CH) (δ ppm)	² J _(PH) (Hz)	³¹ P chemical shifts (δ ppm)
MOBPPY	4.37 (d)		16.8
Complex (1)	4.4 (br)	_	14.06, 40.93
Complex (2)	4.4 (br)	_	13.68, 41.28
Complex (3)	4.5 (d)	25	16.00
Complex (4)	4.35 (s br)	_	16.16
Complex (5)	5.22 (s br)	-	24.75

couplings or presence of two diastereoisomers. The molar conductivities of (1)–(4) are within the range for 1:1 electrolytes [21], while the low value found for complex (5) can be explained by assuming that the anion interacts with the cation complex in solution [11]:

 $[Ag\{MOBPPY\}_2]OTf \Rightarrow [Ag\{MOBPPY\}_2OTf]$

Conclusion

Complexes (1)-(4) represent new examples of ylides Obound to a soft metal center. This coordination mode is rather unusual for the classical soft metals. It seems likely that the cationic character of the palladium complexes renders the metal center less soft and more receptive to possible coordination by a hard ligand. On the other hand, the O-coordination of the ylide results in lower steric requirements than the C-coordination mode. The compromise between electronic and steric factors would decide the final coordination mode of the ylide. Examples of Ccoordination of ylide in cationic Pd(II) complexes are known [10], showing that the cationic character of the complex is not the only parameter to be considered. In complex (5), the ylide ligand binds to the silver atom through the methine carbon. This coordination mode is also rather usual for the classical soft metals.

References

- 1. Shen Y (1998) Acc Chem Res 31:584
- 2. Puke CG, Erker NC, Aust EU (1998) J Am Chem Soc 120:4863
- 3. Kolodiazhnyi OI (1997) Russ Chem Rev 66:225
- Cobridge DEC (1995) Phosphorus an outline of chemistry, biochemistry and uses, 5th edn. Elsevier, Ámsterdam
- Vicente J, Chicote MT, Lagunas MC, Jones PG (1991) J Chem Soc, Dalton Trans 2579
- 6. Buckle J, Harrison PG (1973) J Organomet Chem 49:C17
- (a) Aguilar D, Aragues AM, Bielsa R, Serrano E, Navarro R, Urriolabietia PE (2007) J Organomet Chem 26:3541; (b) Weleski ET, Silver JL, Jansson MD, Burmeister JL (1975) J Organomet Chem 102:365; (c) Bravo P, Fronza G, Ticozzi T (1976)

J Organomet Chem 111:361; (d) Koezuka H, Matsubayashi G, Tanaka T (1976) Inorg Chem 15:417; (e) Akkurt M, Karami K, Yalem SP, Buyukgungor O (2008) Acta E 64:m612–m613

- Nishiyama H, Itoh K, Ishii Y (1975) J Organomet Chem 87:129
 Vicent J, Chicote MT, Fernandez-Baeza J (1989) J Organomet
- Chem 364:407 10. Onishi M, Ohama Y, Hiraki K, Shintani H (1982) Polyhedron
- 1:539
- 11. Vicent J, Chicote MT, Saura-Llamas I (1991) J Chem Educ 70:163
- 12. Buckle J, Harrison PG, King TJ, Richards JA (1972) J Chem Soc, Chem Commun 1104
- Albanese JA, Staley DA, Rheingold AL, Burmeister JL (1990) Inorg Chem 29:2209

- 14. Kawafune I, Matsubayashi G (1983) Inorg Chim Acta 70:1
- 15. Uson R, Fornies J, Navarro R, Espinet P, Mendivil CJ (1985) J Organomet Chem 290:125
- Burmister JL, Silver JL, Weleski ET, Schweizer EE, Kopay CM (1973) Synth Inorg Met-Org Chem 3:339
- Vicent J, Chicote MT, Fernandez-Baeza J, Cayuelas JA, Jones PG, Sheldrick GM, Espinet P (1985) J Chem Soc, Dalton Trans 1163
- 18. Ramirez F, Dershowitz S (1957) J Org Chem 22:41
- Vicent J, Chicote MT, Fernandez-Baeza J, Martin J, Saura-Llamas I (1987) J Organomet Chem 331:409
- Kalyanasundari M, Panchanatheswaran K, Robinson WT, Wen H (1995) Organomet Chem 491:103–109
- 21. Geary WG (1971) Coord Chem Rev 7:81